§3.3. Свойства параллельных прямых

Две прямые, параллельные третьей, параллельны.

Это свойство называется транзитивностью параллельности прямых.

Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.

Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Пусть (AB) данная прямая, C – точка, не лежащая на ней. Прямая AC разбивает плоскость на две полуплоскости. Точка B лежит в одной из них. В соответствии с аксиомой 3.2 можно от луча СA отложить угол (ACD), равный углу (CAB), в другую полуплоскость. ∠ACD и ∠CAB – равные внутренние накрест лежащие при прямых AB и CD и секущей (AC) Тогда в силу теоремы 3.1 (AB) || (CD). С учетом аксиомы 3.1 теорема доказана.

Свойство параллельных прямых задается следующей теоремой, обратной к теореме 3.1.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

Пусть (AB) || (CD). Предположим, что ∠ACD ≠ ∠BAC. Через точку A проведем прямую AE так, что ∠EAC = ∠ ACD. Но тогда по теореме 3.1 (AE) || (CD), а по условию – (AB) || (CD). В соответствии с теоремой 3.2 (AE) || (AB). Это противоречит теореме 3.3, по которой через точку A, не лежащую на прямой CD, можно провести единственную прямую, параллельную ей. Теорема доказана.

К теореме 3.4 Рис. 3.3.1. К теореме 3.4

На основании этой теоремы легко обосновываются следующие свойства.

  • Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.
  • Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180°.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Понятие параллельности позволяет ввести следующее новое понятие, которое в дальнейшем понадобится в 11-й главе.

Два луча называются одинаково направленными, если существует такая прямая, что, во-первых, они перпендикулярны этой прямой, во-вторых, лучи лежат в одной полуплоскости относительно этой прямой.

Два луча называются противоположно направленными, если каждый из них одинаково направлен с лучом, дополнительным к другому.

Одинаково направленные лучи AB и CD будем обозначать: [AB) ↑ ↑  [CD) , а противоположно направленные лучи AB и CD [AB) ↑ ↓  [CD) .

Одинаково направленные и противоположно направленные лучи Рис. 3.3.2.
С благодарностью к источнику: Открытая Математика. Планиметрия.